Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.550
Filtrar
1.
Nat Commun ; 15(1): 2778, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555361

RESUMO

Bacterial genotoxins damage host cells by targeting their chromosomal DNA. In the present study, we demonstrate that a genotoxin of Salmonella Typhi, typhoid toxin, triggers the senescence-associated secretory phenotype (SASP) by damaging mitochondrial DNA. The actions of typhoid toxin disrupt mitochondrial DNA integrity, leading to mitochondrial dysfunction and disturbance of redox homeostasis. Consequently, it facilitates the release of damaged mitochondrial DNA into the cytosol, activating type I interferon via the cGAS-STING pathway. We also reveal that the GCN2-mediated integrated stress response plays a role in the upregulation of inflammatory components depending on the STING signaling axis. These SASP factors can propagate the senescence effect on T cells, leading to senescence in these cells. These findings provide insights into how a bacterial genotoxin targets mitochondria to trigger a proinflammatory SASP, highlighting a potential therapeutic target for an anti-toxin intervention.


Assuntos
Fenótipo Secretor Associado à Senescência , Febre Tifoide , Humanos , Febre Tifoide/metabolismo , Mutagênicos/metabolismo , Senescência Celular/fisiologia , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Salmonella , Fenótipo
2.
Gut Microbes ; 16(1): 2310215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374654

RESUMO

Human colorectal cancers (CRCs) are readily colonized by colibactin-producing E. coli (CoPEC). CoPEC induces DNA double-strand breaks, DNA mutations, genomic instability, and cellular senescence. Infected cells produce a senescence-associated secretory phenotype (SASP), which is involved in the increase in tumorigenesis observed in CRC mouse models infected with CoPEC. This study investigated whether CoPEC, and the SASP derived from CoPEC-infected cells, impacted chemotherapeutic resistance. Human intestinal epithelial cells were infected with the CoPEC clinical 11G5 strain or with its isogenic mutant, which is unable to produce colibactin. Chemotherapeutic resistance was assessed in vitro and in a xenograft mouse model. Expressions of cancer stem cell (CSC) markers in infected cells were investigated. Data were validated using a CRC mouse model and human clinical samples. Both 11G5-infected cells, and uninfected cells incubated with the SASP produced by 11G5-infected cells exhibited an increased resistance to chemotherapeutic drugs in vitro and in vivo. This finding correlated with the induction of the epithelial to mesenchymal transition (EMT), which led to the emergence of cells exhibiting CSC features. They grew on ultra-low attachment plates, formed colonies in soft agar, and overexpressed several CSC markers (e.g. CD133, OCT-3/4, and NANOG). In agreement with these results, murine and human CRC biopsies colonized with CoPEC exhibited higher expression levels of OCT-3/4 and NANOG than biopsies devoid of CoPEC. Conclusion: CoPEC might aggravate CRCs by inducing the emergence of cancer stem cells that are highly resistant to chemotherapy.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Peptídeos , Policetídeos , Humanos , Camundongos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Transição Epitelial-Mesenquimal , Mutagênicos/metabolismo , Policetídeos/farmacologia , Policetídeos/metabolismo , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo
3.
Gut Microbes ; 16(1): 2320291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417029

RESUMO

Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Peptídeos , Policetídeos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Microambiente Tumoral , Resistencia a Medicamentos Antineoplásicos , Mutagênicos/metabolismo , Recidiva Local de Neoplasia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Policetídeos/metabolismo , Lipídeos
4.
Arch Toxicol ; 98(2): 425-469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147116

RESUMO

Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.


Assuntos
Micotoxinas , Perileno , Humanos , Alternaria/metabolismo , Micotoxinas/toxicidade , Micotoxinas/análise , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Lactonas/toxicidade , Lactonas/metabolismo , Medição de Risco , Contaminação de Alimentos/análise
5.
J Toxicol Sci ; 48(11): 571-583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914285

RESUMO

Various chemicals, including pesticides, heavy metals, and metabolites of tobacco, have been detected in fetal environment. Fetuses are exposed to these chemicals at relatively low concentrations; however, their risk of developing neurological and behavioral disorders increases after birth. We aimed to evaluate the effects of five chemicals (diethylphosphate, cotinine, octachlorodipropyl ether, mercury, and selenium) detected in the serum of pregnant mothers on neural development using human neurospheres (NSphs) differentiated from induced pluripotent stem cells. Exposure to each chemical at serum concentrations revealed no effects on NSph development. However, combined exposure to the five chemicals caused a significant decrease in NSph size and altered gene expression and neural differentiation. Thus, we next focused on DNA methylation to investigate changes in NSph properties caused by chemical exposure. Combined exposure to chemicals had extremely small effects on the DNA methylation status of NSphs at individual gene loci. However, stochastic changes in methylation status caused by chemical exposure were significantly accumulated throughout the entire genome. These results suggest that the five chemicals acted as epimutagens that alter the epigenetic status during human neural development at the biological level. Taken together, we showed for the first time, the epimutagen-induced alterations in neural differentiation at serum concentrations using an in vitro human neuronal model.


Assuntos
Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Gravidez , Feminino , Humanos , Mutagênicos/metabolismo , Metilação de DNA , Diferenciação Celular/genética
6.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 830-836, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561403

RESUMO

Colibactin is a genotoxic natural product produced by select commensal bacteria in the human gut microbiota. The compound is a bis-electrophile that is predicted to form interstrand DNA cross-links in target cells, leading to double-strand DNA breaks. The biosynthesis of colibactin is carried out by a mixed NRPS-PKS assembly line with several noncanonical features. An amidase, ClbL, plays a key role in the pathway, catalyzing the final step in the formation of the pseudodimeric scaffold. ClbL couples α-aminoketone and ß-ketothioester intermediates attached to separate carrier domains on the NRPS-PKS assembly. Here, the 1.9 Šresolution structure of ClbL is reported, providing a structural basis for this key step in the colibactin biosynthetic pathway. The structure reveals an open hydrophobic active site surrounded by flexible loops, and comparison with homologous amidases supports its unusual function and predicts macromolecular interactions with pathway carrier-protein substrates. Modeling protein-protein interactions supports a predicted molecular basis for enzyme-carrier domain interactions. Overall, the work provides structural insight into this unique enzyme that is central to the biosynthesis of colibactin.


Assuntos
Escherichia coli , Mutagênicos , Humanos , Mutagênicos/metabolismo , Escherichia coli/genética , Amidoidrolases
7.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445675

RESUMO

MTTA, also known as mephtetramine, is a stimulant novel psychoactive substance characterized by a simil-cathinonic structure. To date, little has been studied on its pharmaco-toxicological profile, and its genotoxic potential has never been assessed. In order to fill this gap, the aim of the present work was to evaluate its genotoxicity on TK6 cells in terms of its ability to induce structural and numerical chromosomal aberrations by means of a cytofluorimetric protocol of the "In Vitro Mammalian Cell Micronucleus (MN) test". To consider the in vitro effects of both the parental compound and the related metabolites, TK6 cells were treated with MTTA in the absence or presence of an exogenous metabolic activation system (S9 mix) for a short-term time (3 h) followed by a recovery period (23 h). No statistically significant increase in the MNi frequency was detected. Specifically, in the presence of S9 mix, only a slight increasing trend was observable at all tested concentrations, whereas, without S9 mix, at 75 µM, almost a doubling of the negative control was reached. For the purposes of comprehensive evaluation, a long-term treatment (26 h) was also included. In this case, a statistically significant enhancement in the MNi frequency was observed at 50 µM.


Assuntos
Dano ao DNA , Mutagênicos , Animais , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Fármacos do Sistema Nervoso Central , Testes de Mutagenicidade/métodos , Mamíferos/metabolismo
8.
Neoplasia ; 43: 100918, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499275

RESUMO

Certain Enterobacteriaceae strains contain a 54-kb biosynthetic gene cluster referred to as "pks" encoding the biosynthesis of a secondary metabolite, colibactin. Colibactin-producing E. coli promote colorectal cancer (CRC) in preclinical models, and in vitro induce a specific mutational signature that is also detected in human CRC genomes. Yet, how colibactin exposure affects the mutational landscape of CRC in vivo remains unclear. Here we show that colibactin-producing E. coli-driven colonic tumors in mice have a significantly higher SBS burden and a larger percentage of these mutations can be attributed to a signature associated with mismatch repair deficiency (MMRd; SBS15), compared to tumors developed in the presence of colibactin-deficient E. coli. We found that the synthetic colibactin 742 but not an inactive analog 746 causes DNA damage and induces transcriptional activation of p53 and senescence signaling pathways in non-transformed human colonic epithelial cells. In MMRd colon cancer cells (HCT 116), chronic exposure to 742 resulted in the upregulation of BRCA1, Fanconi anemia, and MMR signaling pathways as revealed by global transcriptomic analysis. This was accompanied by increased T>N single-base substitutions (SBS) attributed to the proposed pks+E. coli signature (SBS88), reactive oxygen species (SBS17), and mismatch-repair deficiency (SBS44). A significant co-occurrence between MMRd SBS44 and pks-associated SBS88 signature was observed in a large cohort of human CRC patients (n=2,945), and significantly more SBS44 mutations were found when SBS88 was also detected. Collectively, these findings reveal the host response mechanisms underlying colibactin genotoxic activity and suggest that colibactin may exacerbate MMRd-associated mutations.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Mutação , Neoplasias Colorretais/genética , Neoplasias do Colo/patologia
10.
Cell Rep ; 42(3): 112199, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36870054

RESUMO

The DNA-alkylating metabolite tilimycin is a microbial genotoxin. Intestinal accumulation of tilimycin in individuals carrying til+ Klebsiella spp. causes apoptotic erosion of the epithelium and colitis. Renewal of the intestinal lining and response to injury requires the activities of stem cells located at the base of intestinal crypts. This study interrogates the consequences of tilimycin-induced DNA damage to cycling stem cells. We charted the spatial distribution and luminal quantities of til metabolites in Klebsiella-colonized mice in the context of a complex microbial community. Loss of marker gene G6pd function indicates genetic aberrations in colorectal stem cells that became stabilized in monoclonal mutant crypts. Mice colonized with tilimycin-producing Klebsiella displayed both higher frequencies of somatic mutation and more mutations per affected individual than animals carrying a non-producing mutant. Our findings imply that genotoxic til+ Klebsiella may drive somatic genetic change in the colon and increase disease susceptibility in human hosts.


Assuntos
Microbiota , Mutagênicos , Humanos , Camundongos , Animais , Mutagênicos/metabolismo , Colo/metabolismo , Mutação/genética , Células-Tronco , Mucosa Intestinal
11.
Photosynth Res ; 158(2): 81-90, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36847892

RESUMO

Gloeobacter violaceus is an ancient cyanobacterium as it branches out from the basal position in the phylogenic tree of cyanobacteria. It lacks thylakoid membranes and its unique bundle-shaped type of phycobilisomes (PBS) for light harvesting in photosynthesis are located on the interior side of cytoplasmic membranes. The PBS from G. violaceus have two large linker proteins that are not present in any other PBS, Glr2806, and Glr1262, which are encoded by the genes glr2806 and glr1262, respectively. The location and functions of the linkers Glr2806 and Glr1262 are currently unclear. Here, we report the studies of mutagenetic analysis of glr2806 and the genes of cpeBA, encoding the ß and α subunits of phycoerythrin (PE), respectively. In the mutant lacking glr2806, the length of the PBS rods remains unchanged, but the bundles are less tightly packed as examined by electron microscopy with negative staining. It is also shown that two hexamers are missing in the peripheral area of the PBS core, strongly suggesting that the linker Glr2806 is located in the core area instead of the rods. In the mutant lacking the cpeBA genes, PE is no longer present and the PBS rods have only three layers of phycocyanin hexamers. The construction of deletional mutants in G. violaceus, achieved for the first time, provides critical information for our understanding of its unique PBS and should be useful in studies of other aspects of this interesting organism as well.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/metabolismo , Mutagênicos/metabolismo , Proteínas/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Ficocianina/metabolismo , Ficoeritrina/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-36669812

RESUMO

Nanomaterials are progressively being applied in different areas, including biomedical uses. Carbon nanomaterials are relevant for biomedical sciences because of their biocompatibility properties. Graphene quantum dots (GQD) have a substantial potential in drug-delivery nanostructured biosystems, but there is still a lack of toxicological information regarding their effects on human health and the environment. We thus evaluated the mutagenicity, cytotoxicity and genotoxicity of this nanomaterial using alternative methods applied in regulatory toxicology guidelines. The Ames test was carried out in the presence and absence of exogenous metabolization. Salmonella enterica serovar Typhimurium strains TA97a, TA98, TA100, TA102, TA104, and TA1535 were exposed to GQD with concentrations ranging from 1 to 1000 µg/plate. The mammal cell viability assays were carried out with HepG2 and 3T3BalbC cell lineages and the in vitro Cytokinesis-Block Micronucleus assay (CBMN) was applied for 24 h of exposure in non-cytotoxic concentrations. Mutagenicity was induced in the TA97a strain in the absence of exogenous metabolization, but not in its presence. Mutagenicity was also detected in the TA102 strain in the assay with exogenous metabolization, suggesting redox misbalance mutagenicity. The WST-1 and LDH assays demonstrated that GQD decreased cell viability, especially in 3T3BalbC cells, which showed more sensitivity to the nanomaterial. GQD also increased micronuclei formation in 3T3BalbC and caused a cytostatic effect. No significant impact on HepG2 micronuclei formation was observed. Different metabolic systems interfered with the mutagenic, cytotoxic, and genotoxic effects of GQD, indicating that liver metabolism has a central role in the detoxification of this nanomaterial.


Assuntos
Grafite , Nanopartículas , Pontos Quânticos , Animais , Humanos , Testes de Mutagenicidade/métodos , Grafite/toxicidade , Pontos Quânticos/toxicidade , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Dano ao DNA , Mamíferos
13.
Nat Chem Biol ; 19(2): 159-167, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253549

RESUMO

The human gut bacterial genotoxin colibactin is a possible key driver of colorectal cancer (CRC) development. Understanding colibactin's biological effects remains difficult owing to the instability of the proposed active species and the complexity of the gut microbiota. Here, we report small molecule boronic acid inhibitors of colibactin biosynthesis. Designed to mimic the biosynthetic precursor precolibactin, these compounds potently inhibit the colibactin-activating peptidase ClbP. Using biochemical assays and crystallography, we show that they engage the ClbP binding pocket, forming a covalent bond with the catalytic serine. These inhibitors reproduce the phenotypes observed in a clbP deletion mutant and block the genotoxic effects of colibactin on eukaryotic cells. The availability of ClbP inhibitors will allow precise, temporal control over colibactin production, enabling further study of its contributions to CRC. Finally, application of our inhibitors to related peptidase-encoding pathways highlights the power of chemical tools to probe natural product biosynthesis.


Assuntos
Microbioma Gastrointestinal , Policetídeos , Humanos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Escherichia coli/metabolismo , Policetídeos/química , Peptídeo Hidrolases/química
14.
Science ; 378(6618): 358-359, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36302018
15.
Science ; 378(6618): eabm3233, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36302024

RESUMO

Microbiota-derived metabolites that elicit DNA damage can contribute to colorectal cancer (CRC). However, the full spectrum of genotoxic chemicals produced by indigenous gut microbes remains to be defined. We established a pipeline to systematically evaluate the genotoxicity of an extensive collection of gut commensals from inflammatory bowel disease patients. We identified isolates from divergent phylogenies whose metabolites caused DNA damage and discovered a distinctive family of genotoxins-termed the indolimines-produced by the CRC-associated species Morganella morganii. A non-indolimine-producing M. morganii mutant lacked genotoxicity and failed to exacerbate colon tumorigenesis in mice. These studies reveal the existence of a previously unexplored universe of genotoxic small molecules from the microbiome that may affect host biology in homeostasis and disease.


Assuntos
Neoplasias Colorretais , Dano ao DNA , Microbioma Gastrointestinal , Indóis , Doenças Inflamatórias Intestinais , Morganella morganii , Mutagênicos , Animais , Camundongos , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Morganella morganii/genética , Morganella morganii/isolamento & purificação , Morganella morganii/metabolismo , Indóis/metabolismo , Carcinogênese/genética , Humanos , Mutagênicos/metabolismo , Células HeLa
16.
PLoS Pathog ; 18(9): e1010766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067266

RESUMO

Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Proteínas de Membrana , Fosfotransferases , Policetídeos , Staphylococcus aureus , Fatores de Transcrição , Animais , Antibacterianos/metabolismo , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Mutagênicos/metabolismo , N-Metilaspartato/metabolismo , Peptídeos , Fosfotransferases/genética , Policetídeos/metabolismo , Staphylococcus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Infecção dos Ferimentos/microbiologia
17.
Chem Res Toxicol ; 35(10): 1747-1765, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36044734

RESUMO

Nitro group containing xenobiotics include drugs, cancer chemotherapeutic agents, carcinogens (e.g., nitroarenes and aristolochic acid) and explosives. The nitro group undergoes a six-electron reduction to form sequentially the nitroso-, N-hydroxylamino- and amino-functional groups. These reactions are catalyzed by nitroreductases which, rather than being enzymes with this sole function, are enzymes hijacked for their propensity to donate electrons to the nitro group either one at a time via a radical mechanism or two at time via the equivalent of a hydride transfer. These enzymes include: NADPH-dependent flavoenzymes (NADPH: P450 oxidoreductase, NAD(P)H-quinone oxidoreductase), P450 enzymes, oxidases (aldehyde oxidase, xanthine oxidase) and aldo-keto reductases. The hydroxylamino group once formed can undergo conjugation reactions with acetate or sulfate catalyzed by N-acetyltransferases or sulfotransferases, respectively, leading to the formation of intermediates containing a good leaving group which in turn can generate a nitrenium or carbenium ion for covalent DNA adduct formation. The intermediates in the reduction sequence are also prone to oxidation and produce reactive oxygen species. As a consequence, many nitro-containing xenobiotics can be genotoxic either by forming stable covalent adducts or by oxidatively damaging DNA. This review will focus on the general chemistry of nitroreduction, the enzymes responsible, the reduction of xenobiotic substrates, the regulation of nitroreductases, the ability of nitrocompounds to form DNA adducts and act as mutagens as well as some future directions.


Assuntos
Poluentes Ambientais , Substâncias Explosivas , Acetiltransferases/metabolismo , Aldeídos , Aldo-Ceto Redutases/metabolismo , Carcinógenos , Adutos de DNA , Redes e Vias Metabólicas , Mutagênicos/metabolismo , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADP/metabolismo , Quinonas , Espécies Reativas de Oxigênio , Sulfatos , Sulfotransferases/metabolismo , Xantina Oxidase/metabolismo , Xenobióticos
18.
Virulence ; 13(1): 1199-1215, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35795909

RESUMO

Bacterial genotoxins are peptide or protein virulence factors produced by several pathogens, which make single-strand breaks (SSBs) and/or double-strand DNA breaks (DSBs) in the target host cells. If host DNA inflictions are not resolved on time, host cell apoptosis, cell senescence, and/or even bacterial pathogen-related cancer may occur. Two multi-protein AB toxins, cytolethal distending toxin (CDT) produced by over 30 bacterial pathogens and typhoid toxin from Salmonella Typhi, as well as small polyketide-peptides named colibactin that causes the DNA interstrand cross-linking and subsequent DSBs is the most well-characterized bacterial genotoxins. Using these three examples, this review discusses the mechanisms by which these toxins deliver themselves into the nucleus of the target host cells and exert their genotoxic functions at the structural and functional levels.


Assuntos
Bactérias , Mutagênicos , Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Fatores de Virulência/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-35483777

RESUMO

Sodium azide is a strong mutagen that has been successfully employed in mutation breeding of crop plants. In biological systems, it is metabolically converted to the proximate mutagen azidoalanine, which requires further bioactivation to a putative ultimate mutagen that remains elusive. The nature of the DNA modifications induced by azides leading to mutations is also unknown. Other mutagenic organic azido compounds seem to share the same bioactivation pathway to the ultimate mutagenic species as they induce point mutations dependent on the same DNA repair pathways. We investigated mutations induced by the representative mutagen 3-azido-1,2-propanediol (azidoglycerol, AZG) in the human TK6 cell line. Until now, azides have been considered to be non-mutagens and non-carcinogens in mammals, including humans, as judged only by the conventional clastogenicity chromosomal aberration types of bioassays. Here, we show the potent mutagenicity of AZG in cultured human cells, comparable to alkylating agents such as methyl methanesulfonate at concentrations with similar lethality. The potent ability of an organic azide to induce base substitutions in a mammalian system raises an alert with respect to human exposure to organic and inorganic azido compounds.


Assuntos
Azidas , Mutagênicos , Animais , Azidas/metabolismo , Azidas/toxicidade , Humanos , Mamíferos , Mutagênese , Testes de Mutagenicidade , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Propilenoglicóis
20.
Xenobiotica ; 52(3): 301-311, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35473450

RESUMO

α-Pinene caused a concentration-responsive increase in bladder hyperplasia and decrease in sperm counts in rodents following inhalation exposure. Additionally, it formed a prospective reactive metabolite, α-pinene oxide.To provide human relevant context for data generated in animal models and explore potential mechanism, we undertook studies to investigate the metabolism of α-pinene to α-pinene oxide and mutagenicity of α-pinene and α-pinene oxide.α-Pinene oxide was formed in rat and human microsomes and hepatocytes with some species differences. Based on area under the concentration versus time curves, the formation of α-pinene oxide was up to 4-fold higher in rats than in humans.While rat microsomes cleared α-pinene oxide faster than human microsomes, the clearance of α-pinene oxide in hepatocytes was similar between species.α-Pinene was not mutagenic with or without induced rat liver S9 in Salmonella typhimurium or Escherichia coli when tested up to 10 000 µg/plate while α-pinene oxide was mutagenic at ≥25 µg/plate.α-Pinene was metabolised to α-pinene oxide under the conditions of the bacterial mutation assay although the concentration was approximately 3-fold lower than the lowest α-pinene oxide concentration that was positive in the assay, potentially explaining the lack of mutagenicity observed with α-pinene.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/toxicidade , Animais , Monoterpenos Bicíclicos , Dano ao DNA , Masculino , Microssomos Hepáticos/metabolismo , Testes de Mutagenicidade , Mutagênicos/metabolismo , Mutagênicos/farmacologia , Estudos Prospectivos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...